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Abstract

Pervasive computing creates environments saturated
with computing and communication capability, yet grace-
fully integrated with human users. Remote execution has
a natural role to play in such environments, since it lets
applications simultaneously leverage the mobility of small
devices and the greater resources of large devices. In this
paper, we describe Spectra, a remote execution system de-
signed for pervasive environments.

Spectra monitors resources such as battery energy and
file cache state which are especially important for mo-
bile clients. It also dynamically balances energy use and
quality goals with traditional performance concerns to de-
cide where to locate functionality. Finally, Spectra is self-
tuning—it does not require applications to explicitly specify
intended resource usage. Instead, it monitors application
behavior, learns functions predicting their resource usage,
and uses the information to anticipate future behavior.

1 Introduction

Remote execution is an old and venerable topic in sys-
tems research. Systems such as Condor [3] and Butler [15]
have long provided the ability to exploit spare CPU cycles
on other machines. Yet, the advent of pervasive computing
has created new opportunities and challenges for remote ex-
ecution. In this paper, we discuss these issues and how we
have addressed them in the implementation of Spectra, a
remote execution system for pervasive computing.

The need for mobility leads to smaller and smaller com-
puting devices. The size limitations of these devices con-
strain their compute power, battery energy and storage
capacity. Yet, many modern applications are resource-
intensive, with demands that often outstrip device capacity.
Remote execution using wireless networks to access com-
pute servers thus fills a natural role in pervasive computing,
allowing applications to leverage both the mobility of small
devices and the greater resources of stationary devices.

Pervasive computing also creates new challenges [19].

When locating functionality, Spectra must balance the tra-
ditional goal of minimizing application latency with new
goals such as maximizing battery lifetime. It must allow
for wider variation in resources such as CPU and network
bandwidth and monitor new resources such as energy use
and cache state.

Pervasiveness causes additional complexity, and it is un-
reasonable to leave the burden of handling this complex-
ity to applications. Spectra does not require applications to
specify resource requirements for a variety of platforms and
output qualities. Instead, it is self-tuning—it monitors ap-
plication resource usage in order to predict future behavior.

2 Design considerations

The design of Spectra has been greatly influenced by the
need to address the complexities of pervasive computing.

Spectra weighs several possibly divergent goals when
deciding where to execute applications. Performance re-
mains important in mobile environments, but is no longer
the sole consideration. It is also vital to conserve energy so
as to prolong battery lifetime. Quality is another factor—a
resource-poor mobile device may only be able to provide
a low fidelity version of a data object [16] or computa-
tion [20], while a stationary machine may be able to gen-
erate a better version.

Spectra monitors environmental conditions and adjusts
the relative importance of each goal. For example, energy
use is paramount when a device’s battery is low. However,
when the battery is charged, performance considerations
may dominate. Monitoring battery state and expected time
to recharge allows Spectra to adjust the relative importance
of these goals.

Spectra monitors resources that are uniquely significant
in pervasive environments. In addition to battery energy,
file cache state is often critical. Consider a mobile client
with limited storage running a distributed file system. When
there is a choice of remote execution sites, a server with a
warmer file cache may often be preferable to one with a
faster processor.

Finally, Spectra is self-tuning. Applications need not
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Figure 1. Aura architecture

specify their expected usage of various resources. Providing
estimates for even a single resource such as battery energy
is very difficult since energy use depends upon the hard-
ware platform and the degree of power management used.
Spectra applications need only specify operations of interest
and the input parameters to those operations. Spectra mon-
itors and logs resource usage as applications execute. From
logged data, it learns functions relating input parameters to
resource usage, allowing it to predict future application re-
source use.

3 Implementation
3.1 Spectraoverview

Spectra is the remote execution component of Aura, a
new computing system being built at Carnegie Mellon Uni-
versity. Aura provides users with an invisible halo of com-
puting and information services that persists regardless of
location. As shown in Figure 1, an Aura client is composed
of many parts. The Coda file system [10] allows mobile
nodes to access shared data, even when weakly-connected
or disconnected from the network. Odyssey [16] supports
applications that vary their fidelity as resource availability
changes. Fidelity is an application-specific metric of qual-
ity expressed in multiple discrete or continuous dimensions.
For instance, dimensions of fidelity for speech recognition
are vocabulary size and acoustic model complexity.

To provide a complete solution, Spectra must address
several complex issues, including function placement, ser-
vice discovery, execution mechanism and data consistency.
Our initial prototype focuses on the first problem: decid-
ing where and how operations should be executed. It uses
existing technology to address the remaining issues. We
hope to leverage service discovery protocols which allow

attribute-value lookup [1, 23]. Similarly, while we currently
use RPC-based remote execution, Spectra could be modi-
fied to use other mechanisms such as mobile code. Finally,
Coda provides Spectra a single shared file system across
multiple machines.

Spectra consists of three main elements;

e an application interface for describing operations.

e monitors that predict resource use and availability.

e adecision engine that selects the best execution option.

3.2 Application interface

Applications use the Odyssey multi-fidelity inter-
face [14] to communicate with Spectra. The fundamental
unit of discourse is the operation: a code component which
may profit from remote execution. Spectra targets applica-
tions which perform operations of one second or more in
duration—examples are speech recognition, rendering for
augmented reality, and document processing.

Applications first register operations with Spectra. A
registration lists possible fidelities and methods of dividing
computation between local and remote machines. It also
lists input parameters that affect operation complexity.

For example, we have modified the Janus speech recog-
nizer [24] to use Spectra. The basic operation is utterance
recognition. This operation has two fidelities: full and re-
duced. Reduced fidelity uses a smaller, more task-specific
vocabulary than full fidelity. There are three modes of di-
viding computation: recognition may be performed on the
client (local mode), on a server (remote mode) or on both
(hybrid mode). In hybrid mode, the first phase is performed
locally, yielding a greatly compressed data set which is
shipped remotely for the completion of recognition. The
single input parameter is the length of the utterance.

Prior to operation execution, an application invokes
Spectra to determine how and where the operation will ex-
ecute. The application passes in the value of the input
parameters—for example, the size of an utterance to be rec-
ognized. Spectra chooses the best fidelity level and execu-
tion mode as described in Section 3.4 and returns these val-
ues to the application. For remote operations, Spectra also
chooses the server on which the operation will be executed.

Applications execute operations by making remote pro-
cedure calls to the selected server. Direct procedure calls
can be used in the local case to optimize performance.
Applications inform Spectra when operations complete, at
which time Spectra logs resource usage. The logged data
allows Spectra to improve resource prediction over time.

3.3 Resource monitoring

Only part of the data needed by Spectra comes from
applications—the remainder is supplied by resource moni-



tors. Resource monitors are modular, resource-specific code
components that predict resource availability and demand.

Prior to operation execution, each monitor predicts how
much of a resource the operation will receive. Monitors
make predictions for the local machine and for any re-
mote servers on which the operation may execute. For in-
stance, the network monitor predicts bandwidth and round-
trip times between the client and each server. Spectra gath-
ers the predictions in a resource snapshot, which provides a
consistent view of resource availability for that operation.

Resource monitors observe application behavior to pre-
dict future resource demand. While an operation executes,
each monitor measures its resource usage. Upon opera-
tion completion, these values are logged, along with the
operation’s input parameters, fidelity, and method of divid-
ing computation. From this data, Spectra learns functions
which predict operation resource usage. Thus, the more an
operation is executed, the more accurately its resource us-
age is predicted.

We have built monitors for four resources: CPU, net-
work, battery, and cache state. As CPU and network are
well-understood resources, we describe these monitors only
briefly here. The CPU monitor, described in [14], predicts
availability using a smoothed estimate of recent CPU load,
weighted by the maximum speed of the processor. During
operation execution, the CPU monitor measures CPU cy-
cles consumed on local and remote machines. The network
monitor predicts available bandwidth and round-trip times
to remote machines using the algorithm in [16]. For each
operation, it measures bytes sent and received, as well as
the number of RPCs.

3.3.1 Thebattery monitor

The battery monitor must provide accurate, detailed infor-
mation without hindering user mobility. Previous energy
measurement approaches are thus insufficient for the task. It
is infeasible to use external measurement equipment [7, 21]
since such equipment can only be used in a laboratory set-
ting. Alternatively, one can calibrate the energy use of
events such as network transmission, and then later approx-
imate energy use by counting event occurrences [4, 13].
However, results will be inaccurate when the calibration
does not anticipate the full set of possible events, or when
events such as changes in screen brightness are invisible to
the monitor.

Our battery monitor takes advantage of the advent of
“smart” batteries: chips which report detailed information
about battery levels and power drain. The monitor predicts
availability by querying the amount of charge left in the
battery. It measures operation energy use by periodically
polling the chip to sample energy use.

The first platform on which we have implemented our

battery monitor is Compaq’s Itsy v2.2 [8], an advanced
pocket computer with a DS2437 smart battery chip [5].
Since the DS2437 reports average current drawn over a
31.25ms. period and voltage levels change little, we could
measure power by sampling current at 32Hz. Unfortu-
nately, the DS2437°s communication protocol makes the
overhead of frequent sampling unacceptably high. The bat-
tery monitor balances overhead and accuracy by sampling at
6 Hz during operation execution. This rate accurately mea-
sures operation energy use with low (1.8%) CPU overhead.
At other times, the monitor samples at 1 Hz—a rate suffi-
cient to accurately measure battery charge and background
power drain.

3.3.2 Thecache state monitor

Data access can consume significant time and energy when
items are unavailable locally. The cache state monitor esti-
mates these costs by predicting which uncached objects will
be accessed. It currently provides estimates for one impor-
tant class of items: files in the Coda file system.

During operation execution, the monitor observes ac-
cesses of Coda files. When an operation completes, the
monitor logs the name and size of each file accessed.

The cache state monitor currently uses a simple predic-
tion scheme—it assumes the likelihood of a file being ac-
cessed during an operation is similar to the percentage of
times it was accessed during recent operations of similar
type and input parameters. The access likelihood is main-
tained as a weighted average, allowing the monitor to adjust
to changes in application behavior over time. For each file
that may be accessed, the monitor queries Coda to deter-
mine if the file is cached. If it is uncached, the expected
number of bytes to fetch is equal to the file’s size multiplied
by its access likelihood. The monitor estimates the number
of bytes that an operation will fetch by summing individual
predictions for each file.

The monitor makes predictions for both local and remote
machines. It also estimates the rate at which data will be
fetched from Coda servers so that Spectra can calculate the
expected time and energy cost of fetching uncached items.

3.4 Selecting the best option

Spectra’s decision engine chooses a location and fidelity
for each operation. Its inputs are the application’s descrip-
tion of the operation and the monitors’ snapshot of resource
availability. It uses Odyssey’s multi-fidelity solver [14] to
search the space of possible fidelities, remote servers, and
methods of dividing computation. Using gradient-descent
heuristics, the solver attempts to find the best execution al-
ternative.

Spectra evaluates alternatives by their impact on user
metrics. User metrics measure performance or quality per-



ceptible to the end-user—they are thus distinct from re-
sources, which are not directly observable by the user (other
than by their effect on metrics). For instance, while battery
energy and CPU cycles are resources, execution latency and
change in expected battery lifetime are user metrics.

To evaluate an alternative, Spectra first calculates a
context-independent value for each metric. It then weights
each value with an importance function that expresses the
current desirability of the metric to the user. Finally, it cal-
culates the product of the weighted metrics to compute a
single value for evaluating the alternative. This calculation
is a specific instance of the broader concept of “resource-
goodness mappings” [17]. Spectra currently considers three
user metrics in its evaluation: execution latency, battery life-
time, and application fidelity.

Spectra may use many resource predictions to calculate
a metric’s context-independent value. For example, execu-
tion latency is the sum of the predicted latencies of fetching
uncached items, network transmissions, and processing on
local and remote machines. Processing latencies are cal-
culated by dividing the predicted cycles needed for execu-
tion by the predicted amount of cycles available per second.
Network and cache latencies are calculated similarly.

Since importance functions express the current desirabil-
ity of metrics to the user, they may change over time. For
example, we use goal-directed adaptation [6] as the impor-
tance function for battery lifetime. The user specifies a du-
ration that the battery should last, and the system attempts
to ensure that the battery lasts for this duration. A feedback
parameter, ¢, represents how critical energy use is at the
present moment. Spectra adjusts this parameter using esti-
mates of battery charge and recent power usage reported by
the battery monitor. Given expected energy use, E, the bat-
tery importance function is (1/E)°. As an example, when
the computer operates on wall power, ¢ is 0 and energy has
no impact in evaluating alternatives.

For execution latency, we use an application-specific im-
portance function that reflects perceptible deadlines for op-
eration completion. For example, the speech recognizer’s
importance function for latency, L, is simply 1/L. This
function has the intuitive property that a recognition that
takes twice as long is half as desirable to the user.

Fidelity is a multidimensional metric of application-
specific quality. The importance of fidelity is user-
dependent and is often expressed with utility functions that
map each user’s preferences to a single value. For the
speech recognizer, the fidelity importance function gives re-
duced fidelity the value 0.5 and full fidelity the value 1.0.

4 Preliminary evaluation

Our evaluation measured how well Spectra adapts to
changes in resource availability. As a sample application,

we used the speech recognizer described in Section 3.2.

We limited execution to two machines. The client was an
Itsy v2.2 pocket computer with a 206 MHz SA-1100 proces-
sor and 32 MB DRAM. The server was an IBM T20 laptop
with a 700 MHz PI1I processor and 256 MB DRAM. Since
the Itsy lacks a PCMCIA slot (such as is available on the
Compaq iPAQ), the two machines were connected with a
serial link.

We first recognized 15 utterances so that Spectra could
learn the application’s resource requirements. We then cre-
ated several scenarios with varying resource availability and
measured how well Spectra adapted application behavior
when a new utterance was recognized. Figure 2(a) shows
measured execution latency and energy use for each possi-
ble combination of fidelity and location. For each scenario,
the option that best satisfies the evaluation criteria for the
speech application is highlighted. Figure 2(b) shows results
when Spectra chooses the alternative to execute.

In the baseline scenario both computers are unloaded and
connected to wall power. Spectra correctly chooses the hy-
brid mode and full vocabulary here. Using the reduced vo-
cabulary in hybrid mode slightly reduces execution time,
but not nearly enough to counter the reduction in fidelity.

Each remaining scenario differs from the baseline by
varying the availability of a single resource. In the battery
scenario, the client is battery-powered with an ambitious
battery lifetime goal of 10 hours. Energy use is critical, so
Spectra chooses the remote mode. As before, the small en-
ergy and latency benefits of using the reduced vocabulary
do not outweigh the decrease in fidelity.

The network scenario halves the bandwidth between the
client and server. Spectra correctly chooses hybrid execu-
tion and the full vocabulary in this scenario. The CPU sce-
nario loads the client processor. Spectra chooses remote
execution since the cost of doing the first recognition phase
locally outweighs the benefit of reduced network usage.

In the cache scenario, the server is made unavailable
and the 277 KB language model for the full vocabulary is
flushed from the client’s cache. Spectra uses the reduced
vocabulary since the cache miss makes full fidelity recogni-
tion approximately 3 times slower than the reduced case.

Though preliminary, these results are encouraging, since
Spectra chooses the best execution mode in each scenario.
Further, the overhead of using Spectra to choose an alterna-
tive is within experimental error in all cases.

5 Redated work

Spectra’s uniqueness derives from its focus on pervasive
computing. It is the first remote execution system to mon-
itor battery and cache state, support self-tuning operation,
and balance performance goals with battery use and fidelity.
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(a) Time and energy cost of each possible execution alternative

Scenario | Best Alternative | Chosen Alternative | Time (s.) Energy (J.) Fidelity
baseline | Hybrid/Full Hybrid/Full 8.7 (0.8) 1.0
battery Remote/Full Remote/Full 10.6 (1.2) 2.7(0.3) 1.0
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(b) Results of using Spectra to select an alternative

This figure shows how Spectra adapts the behavior of a speech recognizer in the resource availability scenarios described in Section 4. Part

(a) shows the value of the three user metrics considered by Spectra (execution time, energy use, and fidelity) for each of the six possible

execution alternatives. The highlighted alternative is the one that best satisfies the evaluation criteria for the speech application. Part (b)

shows the results of using Spectra to select an alternative—it lists the best possible alternative, the alternative actually chosen by Sﬁ)ectra,
na

and the values of the three metrics. Energy use is only measured in the battery scenario since the client operates on wall power i

other

scenarios. Each result shown is the mean of five trials—standard deviations are shown in parentheses.

Figure 2. Spectra speech recognition results

As the field of remote execution is enormous, we restrict
our discussion of related work to the most closely related
systems. Rudenko’s RPF [18] considers both performance
and battery life when deciding whether to execute processes
remotely. Kunz’s toolkit [12] uses similar considerations
to locate mobile code. Although both monitor application
execution time and RPF also monitors battery use, neither
monitors individual resources such as network and cache
state, limiting their ability to cope with resource variation.

Kremer et al. [11] propose using compiler techniques to
select tasks that might be executed remotely to save energy.
At present, this analysis is static, and thus can not adapt
to changing resource conditions. Such compiler techniques
are complementary to Spectra, in that they could be used to
automatically select Spectra operations and insert Spectra
calls in executables.

Vahdat [22] notes issues considered in the design of
Spectra: the need for application-specific knowledge and
the difficulty of monitoring remote resources.

Several systems designed for fixed environments share
Spectra’s self-tuning nature. Coign [9] statically partitions
objects in a distributed system by logging and predicting
communication and execution costs. Abacus [2] moni-
tors network and CPU usage to migrate functionality in a
storage-area network. Condor monitors goodput [3] to mi-
grate processes in a computing cluster.

6 Conclusion

Remote execution lets pervasive applications leverage
both the mobility of small devices and the greater resources
of large devices. Our initial results with Spectra show that
this benefit can be effectively realized if the system moni-
tors pervasive resources, balances multiple goals in evalua-
tion, and supports self-tuning operation.

Yet, much work remains to be done. Our early expe-
rience with Spectra suggests that predictions often involve
tradeoffs between speed and accuracy. For example, when
estimating remote CPU availability, Spectra might use a
slightly stale cached value, or it might query the server
to obtain more accurate information. If the difference be-
tween possible alternatives is slight, as for example with
short-running operations, Spectra would do better to make a
“quick and dirty” decision. However, when alternatives dif-
fer significantly, Spectra should invest more effort to choose
the optimal alternative. This suggests to us that Spectra it-
self should be adaptive—it should balance the amount of
effort used to decide between alternatives against the possi-
ble benefit of choosing the best alternative.

Since resource logs can grow quite large for complex op-
erations, we hope to develop methods for compressing log
data without sacrificing significant semantic content. We
also plan to investigate how the importance functions used



in evaluation can be modified with simple user interfaces.
Finally, we wish to evaluate Spectra using more dynamic
resource scenarios.
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